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High-Efficiency GaInP/GaAs HBT MMIC

Power Amplifier with up to 9 W

Output Power at 10 GHz
Klaus Riepe, Helmut Leier, Ulrich Seiler, Anita Marten, and Hardy Sledzik

Abstract-Monolithic power amplifiers using adequately bal-
lasted high-efficiency GaInP/GaAs heterojunction bipolar tran-

sistors (HBT’s) have been designed, fabricated, and tested, A

maximum output power of 9 W with a power-added efficiency
(PAE) of 42% and peak power-added efficiencies of 45% have

been achieved at 10 GHz under critical long pulse conditions
(pulse width = 100 ps, duty cycle= 10%). To our knowledge these
results represent the best performance of any GaInP/GaAs HBT
MMIC power amplifier considering efficiency, output power,

operation frequency, and pulse conditions.

I. INTRODUCTION

T HE GaInP/GaAs HBT is now well accepted as a serious

competitor to the conventional AIGaAs/GaAs HBT. The

major interest in GaInP/GaAs HBT’s stem from the manu-

facturing advantages compared to AIGaAs/GaAs HBT’s. The

latter requires delicate base etch monitoring during fabrication,

whereas GaInP/GaAs HBT’s can be structured in a highly

selective etch process that allows easy and economic fabri-

cation. Excellent dc and RF results have been demonstrated

for GaInP/GaAs HBT’s [1]–[3]. Low phase-noise Ka-band

oscillators have already been realized [4].

Recently, the GaInP/GaAs HBT technology has also been

applied to monolithic power amplifiers. Under short pulse

conditions (pulse width = 10 ps, duty cycle = 10%) an

amplifier with an output power of 5.3 W and a PAE of 34% at

9.5 GHz and an amplifier with 9.9 W output power and 33%

PAE at 8.5 GHz have yet been realized [5], [6].

In this letter, we report on the fabrication and performance

of monolithic power amplifiers that are designed for long

pulse and CW operation. The MMIC’s deliver state-of-the-

art performance with respect to efficiency, output power,

operation frequency, and pulse conditions of any GaAs-based

HBT power amplifier [7]-[9].

II. GAINP/GAAs HBT TECHNOLOGY

The processed 3-in. wafers incorporate an InGaAs cap and

a highly carbon-doped base layer with a thickness of 100 nm

and a doping level of 5 x 101gcm-3. The l-~m-thick GaAs

collector is doped at 2 x 1016cm-3. The dc current gain (~)

ManuscriptreceivedJuly 6, 1995.This work wassupportedby the German
MOD.

K. Riepe,H. Leier, U. Seiler, and A. Marten are with Dairnler-BenzAG,
ResearchCenterUlm, 89081Ulm, Germany.

H. Sledzikis whir Daimler-BenzAerospaceAG, 89070Ulm, Germany.
PublisherItem Identifier S 1051-8207(96)00442-4.

Fig. 1. A photograph of a X-band GaInP/GaAs HBT MMIC power amplifier.
The chip size is 8 mm by 4 mm.

is typically 25 resulting in a breakdown voltage (B VCEO) of
~20 v.

The HBT process utilizes a conventional mesa approach

and a self-aligned base metallization with respect to the

emitter stripe. Standard optical contact lithography, selective

wet etching, and deep high-dose proton isolation are applied.

Nonalloyed TiPtAu is used for the emitter and base contacts.

GeNiAu is applied as subcollector contact. The emitter fingers

are adequately ballasted with 11 Q per finger to suppress

completely the current gain collapse effect. The backsides of

the wafers are thinned to a thickness of 100 pm. Subsequently

the via-holes are formed for emitter grounding by dry etching.

III. CIRCUIT DESIGN

A photograph of a fabricated single-stage HBT MMIC

power amplifier is shown in Fig. 1. The chip incorporates 128

emitter fingers, each having an area of 2 x 30 #m2. The overall

emitter area of 7680 pm2 allows high output power levels with

moderate power and current densities (j = 2 x 104 A/cmz).

This is an important aspect since there is some evidence that

reliability of HBT devices strongly depend on current density

[10].

The power amplifier design is based on a temperature-

dependent large-signal HBT model fitted to measured small-

signal S-parameters as well as dc characteristics. For circuit

simulation LIBRATM (HP-EEsofl and an electromagnetic

simulator (SONNET software) are used. The amplifier design

is checked by Rollet’s as well as Nyquist’s stability criterion

to avoid even and odd mode oscillations.
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Fig. 3. Output powers and power-added efficiencies versus input power for
a typical power amplifier. The curves are traced at different collector biases
of VCE = 7 V and VCE = 8 V, respectively (f = 10 GHz, pulse width =
100 #s, dnty cycle = 10%).

To improve the amplifier stability resistive losses are added

to the base bias networks.

IV. CIRCUIT PERFORMANCE

Single-finger HBT’s show maximum frequencies of oscil-

lation (~~ax) of 130 GHz. The 8-finger HBT power unit-cells

have a ~~~ of 50 GHz and a maximum available gain (lWAG)

of 13 dB at 10 GHz (VCE = 8.5 V, j = 2 x 104 A/cm2). The

unit-cell deli~ ers typically 0.5–0.6 W CW output power with

a PAE of 60%. The thermal resistance of the unit-cell at 20”C

is estimated to 130 WV/ at a power density of 1 W/mm.

Fig. 2 shows a typical on-wafer measured I-V characteristic

(measured with a Tektronix 370A curve tracer) of a power am-

plifier demonstrating the stable dc operation of this amplifier.

The series resistance of w 1 Qis mainly determined by the

needle access resistance.

For large-signal analysis the chips are mounted in a test

fixture. All measurements are carried out without any external

tuning. The power-added efficiencies are calculated consider-

ing the power dissipation in the collector terminals as well as

the base terminals.

Fig. 3 illustrates the power performance at 10 GHz under

long pulse (pulse width = 100 Ks, duty cycle = 10%)

conditions. At 7 V collector bias a maximum output power

Fig. 4. Measured CW output power and power-added efficiency as a function
of input power at 10 GHz of a typical power amplifier, The collector Wlasis
7 v.

Fig. 5. Ontput power and PAE versus frequency of a power amplifier at an
input power level of 30 dBm. Also shown are measured gains versus frequency
of severrd power amplifiers nt an output power of 5 W (pulse width = 100
ps, duty cycle = 10%, VCE = 7 V).

of 8 W is reached with a PAE of 44T0. The peak power-added

efficiency is 459’o at 7.7 W with 7 dB gain. At a collector bias

of 8 V the amplifier delivers 9 W output power with a PAE of

42% and a gain of 8 dB. Under CW conditions the amplifier

delivers 7.5 W, a PAE of 39%, and a gain of 6 dB at 10 GHz

(see Fig. 4).

Fig. 5 shows the frequency dependence of output power

and PAE for a power amplifier at an input power level of 30

dBm. The highest output powers and efficiencies are obtained

between 9.5 and 10 CrHz. The variation of gains in the 9-

10.5 GHz range for 4 MMIC chips are also shown in Fig. 5.

At an output power level of 5 W the gains of the single-

stage amplifiers are between 9.5 and 10.5 dB at 9.5 GHz. The

decrease of gain at higher frequencies is mainly due to the

intrinsic RF behavior of the basic-cell.

Amplifier yields of 50% averaged over several wafers have

been obtained demonstrating the high manufacturing level of
GaInP/GaAs-based HBIT MMIC power amplifiers.

‘V. CONCLUSION

In conclusion, we have demonstrated high-efficiency and

high-power X-band amplifiers based on a well established

and optimized GaInP/GaAs heterojunction bipolar transistor
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technology. Maximum output powers of up to 9 W and peak [4]

power-added efficiencies of 45% have been measured at 10

GHz under critical long pulse conditions.
[5]
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